Luring the Virus into a Trap
Published:29 May2023    Source:Heidelberg University
Viruses like influenza A and Ebola invade human cells in a number of steps. In an interdisciplinary approach, research teams from Heidelberg University and Heidelberg University Hospital investigated the final stages of viral penetration using electron tomography and computer simulations. In the case of influenza A, they were able to determine how the immune system fights off the virus using a small protein. For Ebola viruses, they discovered that a specific protein structure must be disassembled in order for an infection to take hold. So-called fusion pores, through which the viral genome is released into the host cell, play a central role in these processes. If they can be prevented from forming, the virus is also blocked. The Heidelberg scientists describe previously unknown mechanisms, which might lead to new approaches to prevent infections.
 
To fight off the virus, the human immune system attempts to block the formation of the fusion pore in a multi-stage process. Infected cells sense the presence of the foreign genome and send a signal, in the form of an interferon molecule, to as yet uninfected cells. This signal triggers the uninfected cells to produce a small cellular protein called interferon-induced transmembrane protein 3 (IFITM3).
 
In a second study, the Heidelberg researchers investigated the penetration and fusion of the Ebola virus. The results of the Heidelberg basic research suggest that a blockade of the disassembly of this layer would be one way to maintain Ebola viruses in a state that does not permit fusion pore formation. Similar to the influenza A virus, the Ebola virus would then be lured into a trap from which it could not escape.